2 research outputs found

    Cloud Servers: Resource Optimization Using Different Energy Saving Techniques

    Get PDF
    Currently, researchers are working to contribute to the emerging fields of cloud computing, edge computing, and distributed systems. The major area of interest is to examine and understand their performance. The major globally leading companies, such as Google, Amazon, ONLIVE, Giaki, and eBay, are truly concerned about the impact of energy consumption. These cloud computing companies use huge data centers, consisting of virtual computers that are positioned worldwide and necessitate exceptionally high-power costs to preserve. The increased requirement for energy consumption in IT firms has posed many challenges for cloud computing companies pertinent to power expenses. Energy utilization is reliant upon numerous aspects, for example, the service level agreement, techniques for choosing the virtual machine, the applied optimization strategies and policies, and kinds of workload. The present paper tries to provide an answer to challenges related to energy-saving through the assistance of both dynamic voltage and frequency scaling techniques for gaming data centers. Also, to evaluate both the dynamic voltage and frequency scaling techniques compared to non-power-aware and static threshold detection techniques. The findings will facilitate service suppliers in how to encounter the quality of service and experience limitations by fulfilling the service level agreements. For this purpose, the CloudSim platform is applied for the application of a situation in which game traces are employed as a workload for analyzing the procedure. The findings evidenced that an assortment of good quality techniques can benefit gaming servers to conserve energy expenditures and sustain the best quality of service for consumers located universally. The originality of this research presents a prospect to examine which procedure performs good (for example, dynamic, static, or non-power aware). The findings validate that less energy is utilized by applying a dynamic voltage and frequency method along with fewer service level agreement violations, and better quality of service and experience, in contrast with static threshold consolidation or non-power aware technique

    An Efficient Approach for Crops Pests Recognition and Classification Based on Novel DeepPestNet Deep Learning Model

    No full text
    Crop pests are to blame for significant economic, social, and environmental losses worldwide. Various pests have different control strategies, and precisely identifying pests has become crucial to pest control and is a significant difficulty in agriculture. Many agricultural professionals are interested in deep learning (DL) models since they have shown significant promise in image recognition. Pest identification approaches in literature have relatively low accuracy in pest recognition and classification due to the complexity of their algorithms and limited data availability. Misclassification of insect pests sometimes leads to using the wrong pesticides, causing harm to agricultural yields and the surrounding environment. It necessitates developing an automated system capable of more accurate pest identification and classification. This paper presents a novel end-to-end DeepPestNet framework for pest recognition and classification. The proposed model has 11 learnable layers, including eight convolutional and three fully connected (FC) layers. We used image rotations techniques to increase the size of the dataset and image augmentations techniques to test the generalizability of the proposed DeepPestNet approach. We used the popular Deng’s crops data set to assess the proposed DeepPestNet framework. We used the proposed method to recognize and classify crop pests into 10-class pests, i.e., Locusta migratoria, Euproctis pseudoconspersa strand, chrysochus Chinensis, empoasca flavescens, Spodoptera exigua, larva of laspeyresia pomonella, parasa lepida, acrida cinerea, larva of S. exigua, and L.pomonella types of insects pests. The proposed method achieved optimal accuracy of 100%. We compared the proposed DeepPestNet approach with traditional pre-trained deep learning (DL) models. To verify the general adaptability of this model, we tested the proposed model on the standard Kaggle dataset “Pest Dataset” to recognize nine types of pests: aphids, armyworm, beetle, bollworm, grasshopper, mites, mosquito, sawfly, and stem borer and achieved an accuracy of 98.92%. The proposed model can provide specialists and farmers with immediate and effective aid in recognizing pests, potentially reducing economic and crop yield losses
    corecore